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Abstract. We present a sparse linear system solver that is based on a multifrontal variant of
Gaussian elimination and exploits low-rank approximation of the resulting dense frontal matrices.
We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to ap-
proximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is
used together with interpolative decompositions. The combination of the randomized compression
with a fast ULV HSS factorization leads to a solver with lower computational complexity than the
standard multifrontal method for many applications, resulting in speedups up to sevenfold for prob-
lems in our test suite. The implementation targets many-core systems by using task parallelism with
dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-
the-art sparse direct solvers. The implementation achieves high performance and good scalability on
a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is
part of a software package called STRUMPACK (STRUctured Matrices PACKage), which also has
a distributed memory component for dense rank-structured matrices.
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1. Introduction. Solving large linear systems efficiently on modern hardware is
an important requirement for many engineering high performance computing codes.
For a wide range of applications, like those using finite element, finite difference, or
finite volume discretizations of partial differential equations (PDEs), the resulting
linear system is extremely sparse. Fast solution methods exploit this sparsity, but
also arrange the computations in such a way that most of the computational work is
done on smaller dense submatrices. The reason for this is that operations on dense
matrices can be implemented very efficiently on modern hardware. The multifrontal
method [23, 38] is an example of a sparse direct solver where most of the work is done
on dense, so-called frontal, matrices. Unfortunately, dense linear algebra operations,
for instance LU decomposition, require O(N3) operations, where N is the matrix
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dimension. In a multifrontal solver these dense operations end up being the bottleneck.
However, it has been observed that for many applications the dense frontal matrices
have some kind of low-rank structure [17].

In [55], a rank-structured multifrontal method is presented in which the larger
frontal matrices are approximated by hierarchically semiseparable (HSS) [50] matri-
ces. For certain model problems, this leads to a solver, or preconditioner, with linear
or almost linear complexity in the total number of degrees of freedom in the sparse
linear system. Here, we present an efficient implementation of a slightly modified ver-
sion of the algorithm presented in [55]. The algorithm in [55] handles only symmetric
positive definite systems, while the code presented here targets general nonsymmet-
ric nonsingular matrices. For HSS compression, a randomized sampling algorithm
from [39] is used. Earlier HSS construction methods (see [56]) cost at least O(N2),
whereas the randomized method in combination with a fast matrix-vector product has
a linear or almost linear complexity, depending on the rank-structure of the frontal
matrix.

An important concept used in the randomized compression algorithm is the inter-
polative or skeleton decomposition [19]. Use of this decomposition leads to a special
structure of the HSS generator matrices (see (2.12)). The HSS factorization used
in [55] for symmetric matrices, and in [57] for nonsymmetric matrices, exploits this
special structure in a so-called ULV-like decomposition. In this paper, the ULV de-
composition from [57] is used.

The HSS format is a subclass of a more general type of hierarchical rank-structured
matrices called H-matrices [13]. HSS matrices are similar to H2-matrices, another
subclass of H-matrices, in the sense that both formats have the special property
that the generators are hierarchically nested (see (2.3) for what this means for HSS).
This is typically not the case in the more general H, the sequentially semiseparable
(SSS) [50], or the hierarchically off-diagonal low-rank (HODLR) [3] formats (all of
which are H-matrices). In HSS and HODLR only off-diagonal blocks are approxi-
mated as low-rank, whereas H and H2 allow more freedom in the partitioning. In [4],
a flat tiled block low-rank (BLR) format is used to approximate dense frontal matri-
ces in the multifrontal solver MUMPS [6], while in other recent work [8] HODLR has
also been proposed to accelerate a multifrontal solver. Both HSS and HODLR use
similar hierarchical off-diagonal partitioning, but HSS further exploits the hierarchi-
cally nested bases’ structure, which can lead to an asymptotically faster factorization
algorithm for some matrices.

Furthermore, thanks to the randomized HSS construction, our solver is also fully
structured (compared to partially structured approaches where only part of the frontal
matrix is compressed; see [51]), and the larger frontal matrices are never explicitly
formed as dense matrices.

Achieving high performance on multi-/many-core architectures can be challeng-
ing, but it has been demonstrated by many authors now that dynamic scheduling of
fine-grained tasks represented by a directed acyclic graph (DAG) can lead to good
performance for a range of codes. This approach was used successfully in the dense
linear algebra libraries PLASMA and MAGMA [2], and more recently it has become
clear that it is also a convenient and efficient strategy for sparse direct solvers. For
instance, in [35] the PaStiX solver [30] is modified to use two different generic DAG
schedulers (PaRSEC [14] and StarPU [9]). In [1] StarPU is used in a multifrontal QR
solver. In [33], OpenMP tasks are submitted recursively for work on different frontal
matrices, while parallelism inside the frontal matrices is also exploited with OpenMP
tasks but with a manual resolution of intertask dependencies. The sparse Cholesky
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solver HSL MA87 [31] uses a custom DAG scheduler implemented in OpenMP. Just
as sparse direct solvers, hierarchical matrix algorithms also benefit from task paral-
lelism: Kriemann [34] uses a DAG to schedule fine-grained tasks to perform H-matrix
LU factorization. Our implementation uses OpenMP task scheduling, but since most
of the tasks are generated recursively, a DAG is never explicitly constructed.

The main contribution of this work is the development of a robust and efficient
code for the solution of general sparse linear systems, with a specific emphasis on
systems from the discretization of PDEs. Our work addresses various implementation
issues, the most important being the use of an adaptive HSS construction scheme
(section 2.2.1), based on the randomized sampling method [39]. Rather than assum-
ing that the maximum rank in the HSS submatrices is known a priori, it is computed
in an adaptive way during the HSS compression. Other implementation techniques
such as fast extraction of elements from an HSS structure (section 4.5) are also in-
dispensable to make the code robust and usable as a black-box solver. The code
achieves high performance and good scalability on a range of modern multi-/many-
core architectures like Intel Xeon and Intel Xeon Phi (MIC), due to runtime scheduled
task parallelism, using OpenMP.1 The exclusive use of task parallelism avoids expen-
sive interthread synchronization and leads to a very scalable code. This is the first
parallel algebraic sparse solver with fully structured HSS low-rank approximation.
The code is made publicly available with a BSD license as part of a package called
STRUMPACK2 (STRUctured Matrices PACKage). STRUMPACK also has a dense
distributed memory component; see [47].

This work advances the field significantly on several fronts.
• Wang et al. [52] presented the first parallel multifrontal code with HSS em-
bedding, called Hsolver. However, two shortcomings prevent it from being
widely adopted: it is restricted to matrices arising from the discretization
of regular meshes, and it is only partially structured due to the hurdle of
the extend-add of HSS update matrices (see section 4). Our new code, on
the other hand, is a purely algebraic solver for general sparse linear systems
and is fully structured, mitigating the HSS extend-add obstacle thanks to the
randomized sampling technique (see section 4.3).
• Napov and Li developed a purely algebraic sparse solver with HSS embed-
ding [42], but it is only sequential and their experiments did not include the
randomized sampling HSS compression. Our new code is parallel and we
show detailed results with randomized sampling.

In future work, building on the current paper and on the distributed HSS code devel-
oped in [47], we intend to develop a distributed memory algebraic sparse solver with
HSS compression.

The rest of this paper is outlined as follows. Some required background on HSS
is briefly presented in section 2. First, in section 2.1, the HSS rank-structured format
is described. Next, the fast randomized sampling HSS construction [39] and the
ULV decomposition [57] are discussed in sections 2.2 and 2.3, respectively. Section 3
describes multifrontal sparse LU decomposition. In section 4 we discuss how HSS
matrices can be incorporated into a multifrontal solver. Section 5 explains various
aspects of the actual implementation. In section 6 we present experimental results
that illustrate numerical and performance aspects of the code. Finally, section 7 has
some concluding remarks and an outlook on planned future work.

1http://openmp.org/wp/openmp-specifications/
2http://portal.nersc.gov/project/sparse/strumpack/

http://openmp.org/wp/openmp-specifications/
http://portal.nersc.gov/project/sparse/strumpack/
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(a) HSS partitioning of a square matrix.
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For a leaf node, Uτ = Ûτ and Vτ = V̂τ .

Fig. 1. Illustration of an HSS partitioning of a square matrix. Diagonal blocks are partitioned
recursively. Figure (b) shows the tree, using postordering, corresponding to the partitioning in (a),
and it illustrates the basis matrices stored in the nodes of the tree.

2. HSS: Hierarchically semiseparable matrices. This section briefly in-
troduces hierarchically semiseparable (HSS) matrices, mostly following the notation
from [39]. HSS is a data-sparse matrix representation which is part of the more general
class of H-matrices and, more specifically, H2-matrices.

2.1. Overview of the HSS matrix format. The following notation is used:
“:” is MATLAB-like notation for all indices in the range, “∗” denotes complex con-
jugation, “#Iτ” is the number of elements in index set Iτ = {i1, i2, . . . , in}, and
Rτ = R(Iτ , :) is the matrix consisting of only the rows Iτ of matrix R.

Consider a square matrix A ∈ C
N×N with an index set IA = {1, . . . , N} associated

with it. Let T be a postordered binary tree, meaning that children in the tree are
numbered before their parent. Each node τ of the tree is associated with a contiguous
subset tτ ⊂ IA. For two siblings in the tree, ν1 and ν2, children of τ , it holds that
tν1 ∪ tν2 = tτ and tν1 ∩ tν2 = ∅. Furthermore, ∪τ=leaf(T )tτ = troot(T ) = IA. The
same tree T is used for the rows and the columns of A, and only diagonal blocks are
partitioned. An example of the resulting matrix partitioning is given in Figure 1a,
and the corresponding tree is shown in Figure 1b.

The diagonal blocks of A, denoted Dτ , are stored as dense matrices in the leaves
τ of the tree T

(2.1) Dτ = A(Iτ , Iτ ) .

The off-diagonal blocks Aν1,ν2 = A(Iν1 , Iν2), where ν1 and ν2 denote two siblings in
the tree, are factored (approximately) as

(2.2) Aν1,ν2 ≈ Ûν1Bν1,ν2

(
V̂ν2

)∗
.

The matrices Ûν1 and V̂ν2 , which form bases for the column and row spaces of
Aν1,ν2 , are typically tall and skinny, with Ûν1 having #Iν1 rows and rrν1 (column-

rank) columns, V̂ν2 has #Iν2 rows and rcν2 (row-rank) columns and hence Bν1,ν2 is
rrν1 × rcν2 . The HSS-rank r of matrix A is defined as the maximum of rrτ and rcτ over
all off-diagonal blocks, where typically r � N . The matrices Bν1,ν2 and Bν2,ν1 are
stored in the parent of ν1 and ν2. For a nonleaf node τ with children ν1 and ν2,
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the basis matrices Ûτ and V̂τ are not stored directly since they can be represented
hierarchically as

(2.3) Ûτ =

[
Ûν1 0

0 Ûν2

]
Uτ and V̂τ =

[
V̂ν1 0

0 V̂ν2

]
Vτ .

Note that for a leaf node Ûτ = Uτ and V̂τ = Vτ . Hence, every node τ with children
ν1 and ν2, except for the root node, keeps matrices Uτ and Vτ instead of the typically
larger Ûτ and V̂τ . The example from Figure 1a can be written out explicitly as

(2.4) A =

⎡
⎢⎢⎣

D1 U1B1,2V
∗
2

[
U1 0
0 U2

]
U3B3,6V

∗
6

[
V ∗
4 0
0 V ∗

5

]
U2B2,1V

∗
1 D2[

U4 0
0 U5

]
U6B6,3V

∗
3

[
V ∗
1 0
0 V ∗

2

]
D4 U4B4,5V

∗
5

U5B5,4V
∗
4 D5

⎤
⎥⎥⎦ .

The storage requirements for an HSS matrix are O(rN). Construction of the
HSS generators will be discussed in the next section. Once an HSS representation
of a matrix is available, it can be used to perform matrix-vector multiplication in
O(rN) operations compared toO(N2) for classical dense matrix-vector multiplication;
see [39, 47].

2.2. Fast HSS construction through randomized sampling. In [39] Mar-
tinsson presents a randomized sampling algorithm for the efficient construction of an
HSS representation of a matrix A. Note that the same technique was also used by Xia
et al. in [57, 55] for HSS compression in a multifrontal solver. The main advantage
of this approach is that it does not need explicit access to all elements of A, but only
needs a fast matrix-vector routine and selected elements from A. The matrix A never
needs to be formed explicitly as a dense matrix, and this allows us to save memory.
The overall complexity of the algorithm isO(Nr2), with r the HSS-rank ofA, provided
that a fast (O(N)) matrix-vector product is available. This section briefly presents
the randomized compression algorithm. For a more in-depth discussion, see [47, 39].

Suppose the HSS-rank r is known a priori and R ∈ CN×d is a tall and skinny
random matrix with d = r + p columns where p is a small oversampling parameter.
Let Sr = AR and Sc = A∗R be samples for the row (superscript r) and column
bases (superscript c) of A, respectively. Algorithm 1 with Rr ≡ Rc ≡ R computes
the HSS representation of A using the information available in the samples Sr and
Sc by hierarchically compressing (using interpolative decompositions; see below) the
off-diagonal blocks of A, starting from the leaves.

Let Dτ for a nonleaf node τ with children ν1 and ν2 be defined as

(2.5) Dτ =

[
Dν1 Aν1,ν2

Aν2,ν1 Dν2

]
.

If {τ1, τ2, . . . , τq} are all the nodes on level � of the HSS tree, then

(2.6) D(�) = diag(Dτ1 , Dτ2 , . . . , Dτq )

is an N × N block diagonal matrix. The main idea of the randomized sampling
Algorithm 1 is to construct a sample matrix S(�) for each level of the tree as

(2.7) S(�) =
(
A−D(�)

)
R = Sr −D(�)R .
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This sample matrix S(�) captures the action of a product of the block off-diagonal
part of A with a set of random vectors R. It is exactly this block off-diagonal part
that needs to be compressed using low-rank approximation.

Another crucial component of the randomized sampling algorithm is the inter-
polative decomposition (ID) [19]. The ID computes a factorization of a rank-k matrix
Y ∈ Cm×n by expressing Y as a linear combination of a set J of k selected columns
of Y :
(2.8)
[X, J ] = ID(Y ), such that (s.t.) Y = Y (:, J)X, Y (:, J) ∈ C

m×k, X ∈ C
k×n ,

or it can be modified to take a compression tolerance ε, such that

(2.9) [X, J ] = ID(Y, ε), s.t. Y = Y (:, J)X + E, Y (:, J) ∈ C
m×k′

, X ∈ C
k′×n ,

with ‖E‖ = O(ε) and k′ ≤ k the ε-numerical rank with respect to (w.r.t.) the
chosen norm. The ID can be computed from a rank-revealing or column pivoted QR
decomposition [16, 45]

(2.10) Y Π = Q
[
R1 R2

]
,

where R1 is upper-triangular and Π is a permutation matrix, followed by a triangular
solve such that

(2.11) Y = (QR1)
([
I R−1

1 R2

]
Π−1

)
≡ Y (:, J)X .

A consequence of using the ID in Algorithm 1 is that Bν1,ν2 = A(Irν1 , I
c
ν2) is a

submatrix of the original matrix A. Furthermore, it also leads to a special structure
for the Uτ and Vτ generators:

(2.12) Uτ = Πr
τ

[
I
Er

τ

]
and Vτ = Πc

τ

[
I
Ec

τ

]
,

referred to as interpolative bases, which can be exploited in the computations. Note
that these interpolative bases are not orthonormal. Although creating orthonormal
bases might slightly improve stability, the interpolative structure improves perfor-
mance of the compression algorithm and the ULV decomposition; see section 2.3.

2.2.1. Adaptive scheme to determine the HSS-rank. In practice however,
the HSS-rank of the matrix is not known in advance. In this case, Algorithm 1 can
be called repeatedly while increasing the number of columns of R, Sr, and Sc. As
long as d < r + p, the ID in line 9 will fail. Suppose the ID fails at node τ , i.e., the
required accuracy ε is not reached, but the descendants of node τ are successfully
compressed. In that case, during the next iteration of Algorithm 1 with d← d+Δd,
it is not necessary to redo the compression (ID) or the extraction of D and B for the
descendants of node τ . However, those descendants do have to update the Δd new
columns in Rr/c (lines 12 and 15) and Sr/c (lines 5, 8 and 10). In [47], this adaptive
rank scheme is presented in more detail.

2.2.2. Implementation issues. The random matrices Rr and Rc are filled
element by element using a pseudorandom number generator. Our implementation
offers the minstd_rand and mt19937 generators from the C++11 standard while the
distribution can be either uniform over [0, 1) or standard normal (Gaussian) N (0, 1).
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Algorithm 1: Computing the HSS factorization of a nonsymmetric matrix.

1 Function Ahss = HSSCompress(Rr, Rc, Sr, Sc, ε, τ = root(Ahss))
Data: Sr = ARr and Sc = A∗Rc with {Sr, Sc, Rr, Rc} ∈ RN×d,

d ≥ rmax + p
Result: Ahss: Dτ (leaves), Bν1,ν2 , Bν2,ν1 (nonleaves), Uτ , Vτ (all except

root).

2 foreach ν ∈ child(τ) do HSSCompress(Rr, Rc, Sr, Sc, ν)
3 if child(τ) ≡ ∅ then
4 Dτ = A(Iτ , Iτ )
5 Sr

τ = Sr(Iτ , :)−DτR
r(Iτ , :) Sc

τ = Sc(Iτ , :)−D∗
τR

c(Iτ , :)

6 else // ν1 and ν2 are the children of node τ
7 Bν1,ν2 = A(Irν1 , I

c
ν2) Bν2,ν1 = A(Irν2 , I

c
ν1 )

8 Sr
τ =

[
Sr
ν1 −Bν1,ν2R

r
ν2

Sr
ν2 −Bν2,ν1R

r
ν1

]
Sc
τ =

[
Sc
ν1 −B∗

ν2,ν1R
c
ν2

Sc
ν2 −B∗

ν1,ν2R
c
ν1

]
9

[
U∗
τ , J

r
τ

]
= ID((Sr

τ )
∗, ε)

[
V ∗
τ , J

c
τ

]
= ID((Sc

τ )
∗, ε)

10 Sr
τ ← Sr

τ (J
r
τ , :) Sc

τ ← Sc
τ (J

c
τ , :)

11 if child(τ) ≡ ∅ then
12 Rr

τ = V ∗
τ R

r(Iτ , :) Rc
τ = U∗

τR
c(Iτ , :)

13 Irτ = Iτ (J
r
τ ) Icτ = Iτ (J

c
τ )

14 else

15 Rr
τ = V ∗

τ

[
Rr

ν1
Rr

ν2

]
Rc

τ = U∗
τ

[
Rc

ν1
Rc

ν2

]
16 Irτ = [Irν1 Irν2 ](J

r
τ ) Icτ = [Icν1 Icν2 ](J

c
τ )

By default the linear congruential engine3 minstd_rand is selected in combination
with the Gaussian distribution.

The rank-revealing QR factorization, used in the ID, could be replaced by a strong
rank-revealing QR factorization [28], with possibly greater accuracy and smaller HSS-
rank but greater computational cost (O(N3)). Note that the rank-revealing QR is
applied to a matrix of reduced size, i.e., O(r × r), due to random sampling, so this
additional computational cost might be negligible. This is left as future work. Two
interesting alternative approaches to the randomized compression routine discussed
in this section should be mentioned, namely adaptive cross approximation [10] and a
matrix-free approach presented in [37].

2.3. ULV-like factorization and solve. Solving a linear system with an HSS
matrix can be done by first computing a so-called ULV decomposition [18], where U
and V ∗ are unitary matrices and L is lower triangular. However, in [55] and [57], the
ULV decomposition is modified to take advantage of the special structure of the Uτ

and Vτ generators; see (2.12). The resulting algorithm is referred to as ULV-like since
it is no longer based on unitary transformations.

In the first step of a ULV factorization, zeros are introduced in the HSS block
rows. This step can be done using, for instance, a full QL factorization

(2.13) Ui = Ωτ

[
0

Ũi

]
, Ω∗

τUi =

[
0

Ũi

]
.

3This choice is motivated further in section 4.
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However, thanks to the special structure of Uτ , a multiplication from the left with a
carefully chosen Ωτ is much cheaper and has a similar effect:

(2.14) Ωτ =

[
−Er

τ I
I 0

]
Πr

τ
T → ΩτUτ = ΩτΠ

r
τ

[
I
Er

τ

]
=

[
0
I

]
.

We refer the reader to [47] for a detailed description of the ULV factorization and the
corresponding solve.

3. Multifrontal sparse LU factorization. Our next object is to exploit the
HSS matrix algebra in sparse factorizations. Most modern sparse factorization codes
use either a supernodal or a multifrontal method. In both methods, panel factorization
is performed on a sequence of dense submatrices, which, for example, correspond
to the separators from a nested dissection ordering. After each panel factorization,
a local Schur complement is formed. In the case of a supernodal algorithm, the
local Schur complement is immediately scattered into the global Schur complement,
whereas for a multifrontal method, the local Schur complement is stored and carried
along temporarily, and its scattering to global Schur complement is delayed until that
part of panel factorization is about to start. In view of the elimination tree capturing
dataflow, a supernodal method transfers parts of the local Schur complement from the
current node to a subset of ancestral nodes, whereas a multifrontal method requires
data transfer only between the current node and the parent node. We believe it is
easier to introduce HSS operations into a multifrontal method due to its simpler data
transfer pattern.

This section briefly recalls the main ingredients of the multifrontal method for the
LU factorization of general invertible sparse matrices. For a more detailed discussion
of multifrontal methods, see [23, 38]. The method casts the factorization of a sparse
matrix into a series of partial factorizations of many smaller dense matrices and Schur
complement updates.

3.1. Matrix reordering. As a preprocessing step, A is first scaled and per-
muted for numerical stability: A← DrADcQc, where Dr and Dc are diagonal matri-
ces that scale the rows and columns of A and Qc is a column permutation that places
large entries on the diagonal. We use the MC64 code by Duff and Koster [22] to
perform the scaling and column permutation. Popular alternative scaling algorithms
can be found in [48, 7, 20]. After that, a fill-reducing permutation A ← PAPT is
applied in order to reduce the number of nonzero elements in the LU factors. Permu-
tation matrix P is computed using nested dissection applied to the adjacency graph
of A + AT , using one of the graph partitioning tools SCOTCH [44] or METIS [32].
Instead of nested dissection, other heuristics like AMD [5] can be used.

The multifrontal method relies on a structure called the elimination tree. The
elimination tree serves as a task and data-dependency graph for both the factorization
and the solution process. A few equivalent definitions of the elimination tree are avail-
able. We use the following, and we recommend the survey by Liu [38] for more detail
on the method and the survey by L’Excellent for more detail about implementation
issues like parallelism, memory usage, numerical aspects, etc. [36].

Definition 3.1. Assume A = LU , where A is an N × N sparse, structurally
symmetric matrix. The elimination tree of A is a tree with N nodes, where the ith
node corresponds to the ith column of L and with the parent relations defined by
parent(j) = min{i : i > j and �ij �= 0} for j = 1, . . . , N − 1.

In practice, nodes are amalgamated: nodes that represent columns and rows of
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the factors with similar structures are grouped together in a single node. For instance,
when using nested dissection reordering, all vertices from the same graph separator
can be grouped in one elimination tree node. In the end, each node corresponds to
a square dense matrix, referred to as a frontal matrix, with the following 2× 2 block
structure:

(3.1) Fi =

[
F11 F12

F21 F22

]
.

3.2. Numerical factorization. Multifrontal factorization of the matrix con-
sists of a bottom-up traversal of the tree, following a topological order (a node is
processed before its parent). Processing a node means first forming (or assembling)
the frontal matrix followed by elimination of the fully summed variables in the F11

block and finally a Schur complement update step. The frontal matrix Fi is formed
by summing the rows and columns of A corresponding to the variables in the F11, F21,
and F12 blocks, with the temporary data—the extended update matrices Ūν—that
have been produced by the children of i after their elimination step, i.e.,

(3.2) Fi = Ai +
∑

ν ∈ child(i)

Ūν =

[
A(Isepi , Isepi ) A(Isepi , Iupdi )

A(Iupdi , Isepi ) 0

]
+ Ūν1 + Ūν2 + · · · ,

where Ii = {Isepi , Iupdi } is the set of row and column indices of Fi w.r.t. the global
matrix A, after reordering. Eliminating the fully summed variables in the F11 block
is done through a partial factorization of Fi, typically via a standard dense matrix
factorization of the F11 block. Next, the Schur complement (contribution block or up-
date matrix) is computed as Ui = F22−F21F

−1
11 F12 and stored in temporary memory.

In contrast to the elimination step which uses straightforward dense matrix operations
(high performance LAPACK/BLAS3 codes), the assembly step (3.2) requires index
manipulation and indirect addressing while summing up Uk. For example, if two chil-
dren’s update matrices Uk =

[
ak bk
ck dk

]
, k = ν1, ν2, have subscript sets Iupd1 = {1, 2}

and Iupd2 = {1, 3}, respectively, then those update matrices can only be added after
aligning the index sets of the two matrices by padding with zero entries:

(3.3) U1 �↔ U2 = Ū1 + Ū2 =

⎡
⎣a1 b1 0
c1 d1 0
0 0 0

⎤
⎦+

⎡
⎣a2 0 b2
0 0 0
c2 0 d2

⎤
⎦ =

⎡
⎣a1 + a2 b1 b2

c1 d1 0
c2 0 d2

⎤
⎦ .

This summation operation is called extend-add, denoted by �↔. The relationship
between frontal matrices and update matrices can be revealed by Fi = Ai �↔ Uν1 �↔
Uν2 �↔ · · · �↔ Uνq , where nodes ν1, ν2, . . . , νq are the children of i.

Each partial factorization might involve pivoting within the frontal matrix. It can
also happen that no suitable pivot can be found during a step of partial factorization.
In this situation, the corresponding row and column remain unfactored and are sent
to the parent node. This strategy is used, for instance, in the MUMPS [6] code.
Currently, our code does not perform any such delayed pivoting, but instead relies
on static pivoting (using MC64) and partial pivoting during the LU decomposition of
the F11 blocks.

3.3. Solution. Once the factors are computed, the solution x of Ax = b is
computed in two steps: forward solution by doing a triangular solution with the L
factor and backward substitution by doing a triangular solution with the U factor.
The forward solution step is a bottom-up topological traversal of the elimination tree,
while the backward substitution is a top-down traversal.
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4. Multifrontal solver with HSS frontal matrices. This section explains
how a multifrontal solver (see section 3) can be used in combination with the HSS data-
structures and algorithms from section 2 to improve the computational complexity
and storage requirements. This section closely follows [55].

4.1. Selection of HSS frontal matrices. Note that the largest frontal ma-
trices, those that determine the computational complexity of the solver, typically
correspond to nodes closer to the root of the elimination tree. Let the top of the tree,
i.e., the root node, be at level � = 0 of the tree. Then, define a switch-level �s such
that the frontal matrices at levels � ≥ �s of the elimination tree are stored as regular
dense matrices whereas those at levels � < �s are compressed using the HSS format.
According to the analysis in [55], �s should be chosen such that the factorization costs
above and below the switch-level are equal. However, this rule is not very practical,
and experiments show that performance depends crucially on the choice of �s.

4.2. Separator reordering. Apart from the scaling and permutation of A for
stability, and nested dissection reordering to reduce fill-in, an additional reordering
is applied to the index set of each separator. This reordering is needed to obtain
favorable HSS rank structure in the corresponding frontal matrices. It is computed
by recursively bisecting the graph of the separator into subgraphs of size approxi-
mately s (defaults to s = 128), using a graph partitioning tool (SCOTCH or METIS).
Each partition then corresponds to a leaf in the HSS tree of the corresponding frontal
matrix. However, since a separator graph can be disconnected, it is enriched with
length-two connections from the connectivity graph before it is passed to the parti-
tioner; see also the discussion in [42]. Note that other reorderings can be used instead
of nested dissection. The influence of the reordering on the ranks of off-diagonal blocks
is studied in [53].

4.3. Skinny extend-add. From here on, we assume that a binary elimination
tree is used. The steps followed for each HSS frontal matrix Fi are as follows. First,
a random matrix Ri ∈ C#Ii×di is constructed. If the children ν1 and ν2 of i are also
HSS, then Ri is constructed as follows:
(4.1)

Ri(r, c) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Rν1(r, c) ≡ Rν2(r, c) if c < min(dν1 , dν2), Ii(r) ∈ Iupdν1 , and Ii(r) ∈ Iupdν2 ,

Rν1(r, c) if c < dν1 and Ii(r) ∈ Iupdν1 ,

Rν2(r, c) if c < dν2 and Ii(r) ∈ Iupdν2 ,

random(r, c) otherwise.

The random matrices of the children are merged in the parent Ri, and any elements
not present in any of the children’s R are generated. This extend-merge procedure is
illustrated in Figure 2. If node i has no (HSS) children, Ri is generated. However,
it is important that corresponding “random” entries in Rν1 and Rν2 are equal, since
that allows efficient evaluation of Sr

i = FiRi (similarly for F∗
i Ri) based on

(4.2)
FiRi =

(
Ai �↔ Uν1 �↔ Uν2

)
Ri = (AiRi) �− (

Uν1Ri(I
upd
ν1 , :)

) �− (
Uν2Ri(I

upd
ν2 , :)

)
,

where Ri(I
upd
ν1 , :) denotes the subset of rows of Ri which are also in Iupdν1 and �−

denotes an extend-add operation where the extend is only done for the rows, not the
columns. By the construction of Ri (4.1), the first dν1 columns of Ri(I

upd
ν1 , :) are

already available at node ν1, which is convenient for the evaluation of Uν1Ri(I
upd
ν1 , :).

Evaluation of Uν1Ri(I
upd
ν1 , :) is discussed in more detail in section 4.4. When generating
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3

1 2

Isep
1 = {1}
Iupd
1 = {4, 5}

Isep
2 = {2, 3}
Iupd
2 = {4, 5, 7}

Isep
3 = {4}
Iupd
3 = {5, 6, 7}

⎡
⎢⎣
r1,1

r4,1

r5,1

⎤
⎥⎦

R1

�

⎡
⎢⎢⎢⎢⎢⎢⎣

r2,1 r2,2
r3,1 r3,2

r4,1 r4,2

r5,1 r5,2

r7,1 r7,2

⎤
⎥⎥⎥⎥⎥⎥⎦

R2

→

⎡
⎢⎢⎢⎢⎢⎢⎣

r4,1 r4,2 r4,3

r5,1 r5,2 r5,3

r6,1 r6,2 r6,3

r7,1 r7,2 r7,3

⎤
⎥⎥⎥⎥⎥⎥⎦

R3

Fig. 2. Illustration of the extend-merge procedure for the random vectors. Node 3 needs three
random vectors. It can get elements r4,1 and r5,1 from either child 1 or 2. Elements r7,1, r7,2,
r4,2, and r5,2 are copied from child 2. Elements r6,1 and r6,2 in R3 are generated with the properly
seeded pseudo-random number generator. When the adaptive HSS compression scheme decides that
a third column has to be added to R3, those elements are also generated.

rows in Ri, the random number generator is seeded for each row using the global row
index Ii(r) to ensure that Ri is consistent with its sibling. This frequent seeding is
the reason the linear congruential pseudo-random engine minstd_rand was chosen as
default over, for instance,, the mt19937 Mersenne-Twister, which has a much bigger
internal state.

The frontal matrices Fi with level(i) < �s are completely approximated by HSS
and are never explicitly formed as a dense matrix. This is in contrast to earlier, so-
called partially structured approaches where, for instance, only the F11 or the F21,
F11, and F12 blocks are compressed [52]. Partially structured approaches typically at
one point or another form a dense representation of the F22 block, perform the Schur
complement update on it, and then use this dense update matrix in the extend-add
procedure. This is done to avoid having to perform an overly complicated extend-add
operation on HSS matrices. However, the approach followed here does not require
first assembling a dense frontal matrix before doing HSS compression. This is due to
the use of the randomized HSS compression, Algorithm 1, which only requires matrix-
vector multiplication and extraction of selected elements from the frontal matrix.

When Ri, S
r
i , and Sc

i have been constructed, HSS compression using Algorithm 1
can be performed. However, when di−p is less than the HSS-rank of Fi, Algorithm 1
will fail. In that case, columns are added to Ri, i.e., di ← di + Δd (Δd = 128 by
default), the new columns of Sr

i and Sc
i are computed, and Algorithm 1 is called

again, this time only updating the new columns of Ri, S
r
i , and Sc

i . Due to the use of
the ID in Algorithm 1, HSS generators Dτ and Bν1,ν2 are submatrices of Fi. Hence, a
routine to extract specific elements from Fi is required. This routine will be described
in section 4.5.

4.4. ULV factorization and low-rank Schur complement update. After
HSS compression, a factorization of Fi11 is performed: classical row-pivoted LU if Fi

is dense, and ULV if it is HSS. For a dense frontal matrix, Ui = Fi22 − Fi21F
−1
i11

Fi12

is computed explicitly. In the HSS case, Fi22 is kept in HSS form and the update
Fi21F

−1
i11

Fi12 = Θ∗
iΦi is stored as a low-rank product. Expressions for Θ∗

i and Φi are
derived and presented in detail in [55] for symmetric and in [57] for nonsymmetric
matrices. Given Ui = Fi22−Θ∗

iΦi, the multiplication with Ui in (4.2) can be performed
efficiently using HSS matrix-vector multiplication for Fi22 and two dense (rectangular)
matrix products for Θ∗

i and Φi.

4.5. Extracting elements from an HSS matrix. Finally, extracting elements
from Fi requires extracting elements from an HSS matrix. In [55] a routine is pre-
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sented for extracting multiple elements from an HSS matrix while trying to minimize
the number of traversals through the HSS tree. We use a conceptually simpler algo-
rithm based on the HSS matrix-vector multiplication. By multiplying an HSS matrix
with unit vectors, selected columns can be extracted. At the leaf nodes, instead of
multiplying with a unit vector, one can simply select the proper columns of V ∗. Unlike
for matrix-vector multiplication, during element extraction parts of the tree traversal
can be pruned.

4.6. Preconditioning versus iterative refinement. Direct solvers often use
a few steps of iterative refinement to improve the solution quality [54]. However, the
multifrontal method with HSS compression as presented in this paper is used as a
preconditioner for GMRES instead. For the same number of multifrontal solve steps
(preconditioner applications), a Krylov solver typically leads to smaller residuals than
iterative refinement. This is particularly useful when the HSS compression tolerance
is increased, since in that case the quality of the HSS-multifrontal preconditioner
decreases and the number of outer iterations increases. Iterative refinement might
not converge in this case since it no longer defines a contraction.

4.7. Solver complexity. The computational complexity of a standard multi-
frontal solver is typically dominated by the dense linear algebra corresponding to
the few largest frontal matrices. For instance, a nested dissection reordering on a
d-dimensional mesh with N = kd vertices has a top separator with O(kd−1) ver-
tices, leading to an overall complexity of O(k3(d−1)), i.e., O(N3/2) and O(N2) for
two-dimensional (2D) and three-dimensional (3D) meshes, respectively.

For the HSS-embedded multifrontal solver, the complexity is dominated by the
HSS compression of the dense frontal matrices, which in turn depends on the rank
pattern. Earlier works by Chandrasekaran et al. [17] and Engquist and Ying [25]
showed the rank patterns of the elliptic and the Helmholtz operators, respectively. Xia
showed complexities for the randomized HSS multifrontal solver assuming different
rank patterns [55]. Combining the above results, we summarize the solver complexities
for two types of PDEs and two sparse solvers in Table 1. A major bottleneck for direct
solvers is often the large memory usage requirement. The HSS-embedded multifrontal
solver has lower asymptotic memory usage than the traditional multifrontal solver,
as also illustrated in Table 1. For the two PDE problems considered in Table 1 the
HSS-embedded solver has optimal memory scaling.

Table 1

Summary of the complexities of the standard multifrontal solver (MF) and the randomized HSS-
embedded multifrontal solver (MF-HSS-RS) applied to two important classes of problems. The mesh
size per side is k and the matrix dimensions are N = k2 in 2D and N = k3 in 3D.

MF MF-HSS-RS

Problem HSS rank Factor flops Memory Factor flops Memory

2D elliptic O(1) O(N3/2) O(N logN) O(N) O(N)
(k × k) Helmholtz O(log k)

3D elliptic O(k) O(N2) O(N4/3) O(N logN) O(N)
(k × k × k) Helmholtz O(k)

5. Shared memory parallel implementation. The algorithm presented in
section 4 has been implemented using C++ and OpenMP, targeting shared memory
platforms. The code relies on BLAS, LAPACK, METIS, and/or SCOTCH and a
recent C++11 compliant compiler with support for OpenMP 3.1 or higher. The code
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Listing 1

Bottom-up topological parallel tree traversal implemented with recursion and the OpenMP ( 3.1)
task construct.

void Tree : : postorder ( depth=0) {
if ( depth < d max) {

if ( l e f t c h i l d )
#pragma omp task unt i ed d e f au l t ( shared ) f i n a l ( depth >= d max−1) mergeable

l e f t c h i l d −>postorder ( depth+1)
if ( r i g h t c h i l d )

#pragma omp task unt i ed d e f au l t ( shared ) f i n a l ( depth >= d max−1) mergeable
r i g h t c h i l d−>postorder ( depth+1)

#pragma omp taskwai t
} else {

if ( l e f t c h i l d ) l e f t c h i l d −>postorder ( depth+1)
if ( r i g h t c h i l d ) r i g h t ch i l d−>postorder ( depth+1)

}
do s t u f f ( depth ) ; // factor/ compress ... , can generate more tasks

}

makes heavy use of the OpenMP task construct. OpenMP was chosen because it is
easy to use, performs well, and is well documented and supported. However, alter-
natives like Intel Threading Building Blocks [46] or Cilk(+) [11] offer conceptually
similar task parallelism. Switching to one of those should not be hard. While other
runtime systems like QUARK [58], DAGuE/PaRSEC [14], and StarPU [9] (distrib-
uted memory task scheduling) and OmpSs [24] might have certain specific advantages
over the OpenMP runtime, many of those innovations (for instance, explicit modeling
of task dependencies or task-offloading) are eventually incorporated in the OpenMP
standard as well.

OpenMP tasks are created and scheduled at runtime by the scheduler. Task
schedulers typically use a work stealing [12] or task stealing strategy to balance load
between threads. Each thread/core has its own local queue of tasks. When a thread
runs out of work it can steal a task from one of the other thread’s task queues.

5.1. Task based tree parallelism. Traversals of both the elimination tree and
the HSS hierarchy allow for tree parallelism; i.e., independent subtrees can be pro-
cessed concurrently. For instance, multifrontal factorization requires bottom-up topo-
logical traversal of the elimination tree, just like HSS compression requires bottom-up
traversal of the HSS hierarchy. The code in Listing 1 shows how to do a parallel
bottom-up tree traversal using the OpenMP task construct. The tree is stored as ob-
jects of a class Tree with two members left_child and right_child, both pointers
to subtrees, also objects of type Tree. In Listing 1, the variable depth keeps track of
the recursion depth; and no more tasks are generated after a certain depth to avoid
excessive overhead of creating too fine-grained tasks. Experiments show that setting
d_max to log2(#threads) + 3 leads to a good task granularity. With this setting, the
maximum number of tasks at any given point in time is about 2d max = 8 ·#threads.
This is enough to ensure good load balance and avoids excessive task creation over-
head. OpenMP tasks supports an if clause, so the check if(depth<d_max) could
have been put in the OpenMP pragma. However, optimizing the code to perform
this check outside the directive completely avoids all task creation and synchroniza-
tion overhead when it evaluates to false. The final(condition) clause informs the
OpenMP runtime that the generated task will not generate more tasks if condition
evaluates to true. Finally, the untied clause informs the runtime that this task can
be moved to a different thread when it encounters a scheduling point. For instance,
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when a task spawns a new task, the spawning task may be moved to another thread.
Untied tasks allow for better load balance, whereas tied tasks (the default) typically
lead to better data locality. The taskwait pragma ensures that processing of the
children is finished before continuing with the parent.

5.2. Hybrid node and tree parallelism. Exploiting tree parallelism alone
as in Listing 1 does not scale well due to the limited degree of parallelism near the
root. Although the HSS-multifrontal algorithm can exploit two nested levels of tree
parallelism (elimination tree and HSS hierarchy), the scaling bottleneck remains. To
overcome this, one needs to exploit parallelism in the computational work inside the
tree nodes, which are mostly dense linear algebra operations. However, work shar-
ing constructs like OpenMP parallel for loops are not allowed within OpenMP
tasks. Moreover, calling multithreaded BLAS or LAPACK routines from multiple
tasks/threads leads to oversubscription and generally poor performance. This is be-
cause existing multithreaded BLAS/LAPACK libraries are optimized to use the entire
machine. One possible strategy is to exploit tree parallelism only for the lower levels
of the tree and switch to a sequential processing of the nodes higher up in the tree
while switching to multithreaded linear algebra. However, this leads to many syn-
chronization points and does not scale with an increasing number of threads. Our
approach, on the other hand, is to use task parallelism within the tree nodes as well
to allow for a seamless transition between tree and node parallelism, since scheduling
of tasks is left to the runtime system. When getting closer to the root node, there is
a shift from tree to node parallelism. This is illustrated in Figure 3. Even in the case
of highly unbalanced trees, the runtime can assign work evenly to the available cores.
We chose not to use an existing library for the task based dense linear algebra, for
instance, PLASMA (based on the QUARK runtime), since we wished to exploit the
same threading mechanism (OpenMP) already used for the tree parallelism.

5.3. Parallel BLAS and LAPACK. One of the most time consuming op-
erations of the algorithm is dense matrix-matrix multiplication C ← αAB + βC.
This can be implemented easily with recursion and task parallelism [41], by splitting
the problem into smaller matrix-matrix multiplications; this strategy is referred to
as divide-and-conquer and is often used in so-called cache-oblivious algorithms [26].
How the matrices are split depends on their shapes. Let A be m× k and B be k× n;
then

C ←

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

αAB + βC if m× n× k ≤ T,

α
[
AB0 AB1

]
+ β

[
C0 C1

]
else if n ≥ max(m, k),

α

[
A0B

A1B

]
+ β

[
C0

C1

]
else if m ≥ k,

α (A0B0 +A1B1) + βC else.

(5.1)

The last case in (5.1), short fat A times tall skinny B, uses two consecutive recursive
matrix-matrix multiplication calls. Cases 2 and 3 start two multiplications in parallel,
spawning two tasks. The recursion ends when reaching case 1, with T a tuning
parameter set by default to T = 643, where a sequential vendor optimized BLAS3
*gemm routine is called. Depending on the scalar type, one of four inlined template
specialization functions for gemm<scalar> is executed to pick the correct version:
sgemm, dgemm, cgemm, or zgemm. For the other BLAS2/3 routines that are required
(for instance, triangular matrix multiplication and solve), a similar recursive approach
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Fig. 3. Schematic illustration of the different types of concurrency in the code and the gradual
shift from tree parallelism to in-node parallelism. (a) Tasks for dense kernels (�) are nested in nodes
(◦) of the HSS trees, which are nested in the elimination tree nodes (�) (e-tree). (b) Left-to-right,
top-to-bottom: (1) Elimination tree concurrency decreases when getting closer to the root node. (2)
Closer to the root of the elimination tree, more HSS tree concurrency is exploited as it becomes
available, i.e., while moving down the HSS tree away from the root. (3) Towards the root of the HSS
tree and the root of the elimination tree, more in-node concurrency (parallel tasked dense algebra) is
exploited. (4) The product of the three types of concurrency, i.e., the overall concurrency, remains
constant throughout both the elimination and HSS trees.
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Fig. 4. Speedups over sequential getrf from Intel MKL for matrices of size 5002 to 40002.
Left: Recursive LU decomposition using OpenMP tasked BLAS code. Middle: Reference LAPACK
getrf using OpenMP tasked BLAS code. Right: MKL optimized multithreaded getrf. Our recursive
implementation scales better than the reference netlib getrf with parallel BLAS but worse than the
MKL optimized code. However, calling MKL multithreaded getrf from multiple threads simulta-
neously would lead to oversubscription and performance penalty. This is not a problem with the
recursive LU because it uses the OpenMP task runtime, just like the rest of the code.

is used. This recursive task generation is also stopped when the recursion depth
becomes too large, with the same depth parameter being passed through the entire
code and incremented each time it enters a new task.
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The code also requires some LAPACK functionality, namely LQ, LU, and RRQR
decompositions. For those, we modify the reference Fortran LAPACK implementation
to make use of our parallel (tasked) BLAS routines. Some vendor optimized LAPACK
libraries not only use the LAPACK reference code on top of multithreaded BLAS calls,
but also add additional optimizations to the LAPACK routines. Unfortunately, in our
approach we cannot take advantage of these optimized multithreaded codes. Consider
partial pivoted LU decomposition, used for the F11 block of a dense frontal matrix.
Apart from the LAPACK *getrf routine using our OpenMP tasked BLAS routines,
we also implemented a recursive LU factorization algorithm [21]. The parallelism in
this algorithm has to come from the BLAS routines, triangular solve, row permutation,
and matrix-matrix multiply. Figure 4 compares the performance and scalability of
the two LU decomposition approaches with the MKL optimized implementation and
shows that our implementation of LU scales nearly as well as MKL without sacrificing
the ability to exploit subtree concurrency. A more scalable approach [15], based on
so-called tiled algorithms instead of recursion, partitions the matrices into tiles of
fixed sizes and assigns tasks to each of the tiles while explicitly modeling the data
dependencies between the tasks. A DAG scheduler then executes the tasks while
respecting their dependencies. OpenMP supports explicit task dependencies since
version 4.0.4 We intend to exploit this feature in the future to achieve more scalable
dense linear algebra operations. For the rank-revealing QR decomposition we use
a modified version of the LAPACK *geqp3 code [45], a BLAS3 version of column
pivoted QR. The routine is modified to call our parallel tasked BLAS and an extra
tolerance parameter ε is added to stop the rank-revealing process as soon as the ε-
rank has been found instead of computing the full decomposition. More precisely,
numerical rank i is detected when Ri+1,i+1/R11 ≤ ε, where R is the upper-triangular
factor.

5.4. Scaling bottlenecks. Before the actual numerical factorization step, but
after matrix scaling and nested dissection reordering, a symbolic factorization step is
performed. During this step some memory is allocated, and the index sets Iupdτ are
assembled. The symbolic factorization is a bottom-up tree traversal which is done in
parallel, as in Listing 1. In a multithreaded setting, memory allocation can become a
serious scaling bottleneck. We have found that the use of a scalable memory allocator,
like TCMalloc [27] or the TBB scalable memory allocator [46] greatly improves the
performance over, for instance, the default malloc in glibc.5 For instance, running
on a 60 core Intel Xeon Phi, the symbolic factorization phase runs up to 56× faster
when using TBBMalloc instead of the default allocator.

6. Numerical experiments. This section presents various numerical results.
Section 6.1 first focuses on some PDE problems on regular grids as this allows us to
easily change the problem size. The following sections consider other matrices from
various applications. Unless otherwise stated, the experiments are performed on a
single 12-core socket of a single node of the NERSC Edison machine.6 A compute
node has two 12-core Intel Ivy Bridge processors at 2.4GHz. Double precision peak
performance is 19.2Gflop/s per core, 230.4Gflop/s per socket, or 460.8Gflop/s per
node. Each socket has 32GB DDR3 1866MHz memory, hence 64GB per node, with
a STREAM [40] bandwidth of 48.5GB/s. We use the Intel 15.0.1 compiler with

4Not all compilers currently support the latest OpenMP 4.0 standard.
5http://www.gnu.org/software/libc/
6https://www.nersc.gov/users/computational-systems/edison/

http://www.gnu.org/software/libc/
https://www.nersc.gov/users/computational-systems/edison/
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sequential MKL.

6.1. PDEs on a regular grid. We start with a number of benchmarks for
well-known PDEs on regular 2D and 3D grids to study scaling of time-to-solution,
number of floating point operations, memory usage, HSS-ranks, etc., w.r.t. problem
size. For these regular grids, a geometric nested dissection code is used instead of the
default METIS graph partitioner. The following benchmark problems are considered:

• Poisson equation −Δu = f on a 2D grid (P2D) using the standard 5-point
finite difference stencil with homogeneous Dirichlet boundary conditions.
• Poisson equation on a 3D grid (P3D) using the standard 7-point stencil with
homogeneous Dirichlet boundary conditions.
• Convection diffusion equation [43] −νΔu + v · ∇u = f on a 2D grid (C2D)
using a 5-point upwind stencil, with viscosity ν = 10−4 and

(6.1) v =
(
x(1 − x)(2y − 1) y(1− y)(2x− 1)

)T
.

• Convection diffusion, similar to the above, on 3D grid (C3D) with
(6.2)

v =
(
2x(1 − x)(2y − 1)z −y(1− y)(2x− 1) −(2x− 1)(2y − 1)z(1− z)

)T
.

• Helmholtz equation

(6.3)
(
−Δ− ω2/v(x)2

)
u(x, ω) = s(x, ω)

on a 2D grid (H2D), with ω the angular frequency, v(x) the seismic velocity,
and u(x, ω) the time-harmonic wavefield solution to the forcing term s(x, ω).
The discretization uses a 9-point stencil and the frequency is set at f = 10Hz
with ω = 2πf . The seismic speed is v(x) = 1500m/s. We use a sampling
rate of about 15 points per wavelength and PML boundary conditions. This
example is indefinite and uses complex arithmetic.
• Same as H2D, but 3D using a 27-point stencil (H3D).

A crucial parameter for performance is the number of levels �s of the elimination
tree for which HSS compression is performed. We call this the HSS switching level.
Note that �s = 0 corresponds to a pure multifrontal solver. Unfortunately, the optimal
�s is impossible to predict a priori, so it is determined experimentally and will always
be mentioned with each result. The same applies to the compression tolerance ε.
In [55, Theorem 4.2], Xia suggests setting �s such that the cost of factorization for
the levels above the switch-level �s equals the cost of factorization for the levels below
the switch-level �s. Unfortunately, since the HSS-ranks are not known a priori, this
is not a practical guideline. Our recommendation is for the user to experiment with
the values of �s and ε to get some intuition as to appropriate values for the particular
application. When �s > 0, i.e., with HSS compression, the multifrontal solver is used
as a preconditioner for restarted GMRES(30) with modified Gram–Schmidt and a zero
initial guess. Without HSS compression, iterative refinement with the direct solver
is used. All experiments are performed in double precision with relative or absolute
stopping criteria ‖ui‖/‖u0‖ ≤ 10−6 or ‖ui‖ ≤ 10−10, where ui = M−1(Axi − b), with
M the approximate multifrontal factorization of A, is the preconditioned residual.

The right-hand-side is always set to A
[
1 1 · · · 1

]T
.

6.1.1. Performance results. Figure 5 shows timing results for the 2D (top) and
3D (bottom) Poisson equations on 50002 and 1253 grids, respectively. Figure 5a shows
numerical factorization time as a function of the number of levels in the elimination
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Fig. 5. Times for factorization (left) and solve (right) of the 2D (top) and 3D (bottom)
Poisson equations on 50002 and 1253 grids as function of the number of levels �s in the elimination
tree for which HSS compression is applied. Different curves correspond to different HSS compression
tolerances ε. For 3D, much more aggressive HSS compression can be used.

tree for which HSS compression was used. The HSS levels always correspond to the
top levels of the elimination tree. This shows that applying HSS compression leads
to a speedup of about 2× for 7 HSS levels. Different lines correspond to different
HSS compression tolerances ε. Somewhat larger factorization speedups are possible
for ε ≥ 10−4. However, this does not lead to faster time-to-solution. Figure 5b
shows the cumulative time for nested dissection reordering, symbolic factorization,
numerical factorization, and GMRES solve. For ε ≥ 10−4, the number of GMRES
iterations, and thus the number of applications of the multifrontal solve, increases
too much to get overall speedup; see also Table 2. Best results were obtained with
�s = 8, ε = 10−7, and only 2 GMRES iterations (3 multifrontal solves). Figures 5c
and 5d show the timings for the 3D Poisson problem. For the 3D problem, much more
aggressive HSS compression can be used. Best results were obtained with �s = 10,
ε = 0.9, and 61 GMRES iterations. For the Poisson problem it seems that for 2D the
direct solver is very efficient, with a modest speedup from HSS, while for 3D the HSS



S376 GHYSELS, LI, ROUET, WILLIAMS, AND NAPOV

Table 2

GMRES iterations corresponding to the experiments shown in Figure 5.

ε \�s 0 1 2 3 4 5 6 7 8 9 10 11 12

2D 50002
10−4 1 8 9 13 14 18 19 22 23 23 24 24 25
10−6 1 2 3 3 3 3 3 3 3 3 3 3 3
10−8 1 2 2 2 2 2 2 2 2 2 2 2 2

3D 1253
0.9 1 21 27 31 39 43 47 57 67 71 88 111 113

10−1 1 9 16 18 23 27 30 34 41 43 47 50 55
10−2 1 8 10 12 15 18 19 20 22 21 22 23 23
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(a) 2D Poisson.
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MF (13.2 N2.0)

(b) 3D Poisson.

Fig. 6. Scaling of the number of floating point operations required to factor and solve a 2D(a)
or 3D(b) Poisson equation. (a) The theory predicts O(N3/2) complexity for the multifrontal (MF)
solver and optimal O(N) [55] complexity with HSS compression. (b) O(N2) complexity for the
multifrontal solver and slightly lower complexity with HSS compression. The fits (black lines) are
very sensitive to the data and not very reliable. However, note the smaller exponents and the larger
constants for the new solver.

enabled factorization leads to a good preconditioner.
Figure 6a shows the total number of flops (numerical factorization and GMRES

solve) for solving a 2D Poisson equation as function of the number of degrees of
freedom, again for different compression tolerances. For the pure multifrontal method
(no compression), the number of flops is O(N3/2), as predicted by the theory. For 2D
Poisson, the HSS-rank is independent of the grid size [17], which leads to an optimal
solver, i.e., linear scaling in the number of unknowns; see the fit in Figure 6a. Note
the much larger constant for the HSS method. For the 50002 problem there is a
reduction in the number of flops by a factor of about 3.3×. However, the observed
speedup (Figure 5b) is smaller than that. This is due to the fact that although the
number of flops for the factorization decreases, the number of flops for the solution
phase (and GMRES iterations) increases. Although multifrontal solve requires an
order of magnitude less flops than factorization, it runs at much lower flop rates
on modern hardware because it is limited by the memory bandwidth instead of the
floating point unit. Additionally, the flop rate in the factorization phase is lower when
using HSS compression due to the more fine-grained task decomposition. Figure 6b
shows number of flops-to-solution for the 3D Poisson equation. For the very aggressive
compression, ε = 0.9, the number of floating point operations for the 1253 problem
is reduced to 4.4% of the number of flops for the multifrontal method. Figure 7a
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Fig. 7. (a) Total solve time (reordering, factorization, and solution) for the 3D 1253 Poisson
equation. (b) Factor size for the same problem. Different lines correspond to different HSS com-
pression tolerance ε, MF refers to pure multifrontal. The HSS enabled solver is faster for larger
problems, and it allows us to solve larger problems.

Table 3

Number of levels �s in the separator tree for which HSS compression is used, for the experiments
shown in Figures 6 and 7. The number of levels �s is chosen as the optimal.

ε \N 10002 20002 30002 40002 50002

10−4 3 6 8 8 9
10−6 3 6 7 8 9
10−8 3 5 7 8 9

ε \N 1003 1103 1203 1303 1403 1503

0.9 9 9 10 11 11 11
10−1 8 8 8 9 10 10
10−2 5 6 6 6 7 7

shows the total solve time for the 3D problem for different grid sizes. These times
include matrix reordering, factorization, and GMRES solve. Figure 7b shows the size
of the factors. Table 3 shows �s, the number of levels in the separator tree for which
HSS compression is used, for the experiments shown in Figures 6 and 7. The optimal
number of HSS levels slowly increases as the problem size increases.

Table 4 shows detailed results for the six PDE problems. The best speedups are
obtained for the 3D problems. The code achieves good performance in flops per second
for the factorization phase—although slightly less so for the HSS enabled code. Since
the performance of the solve phase is not bounded by the floating point unit but
rather by the memory bandwidth, we report the approximate attained bandwidth.
The detailed results from Table 4 are summarized in Figure 8.

The ε and �s values used for Table 4 and Figures 5–7 were chosen to minimize
the total time to factor and solve a single linear system, i.e., the optimal trade-off
between factorization time and number of GMRES iterations. When multiple consec-
utive solves with the same matrix are required, one needs to select different �s and
ε values. For many consecutive and highly accurate solves, the pure (exact) multi-
frontal factorization is probably optimal as it minimizes the number of multifrontal
triangular solves. However, suppose only a few digits of accuracy are required. The
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Table 4

Comparison of the standard multifrontal solver and the multifrontal solver with HSS compres-
sion for a number of PDEs on regular grids. All experiments are run on a 12-core Intel Ivy Bridge
(peak 230.4Gflop/s and 48.5GB/s) in double precision. The code achieves good performance in
terms of Gflop/s (for the factorization) or GByte/s (for the solve) and HSS compression leads to
nice speedups over the standard multifrontal solver. A geometric nested dissection code is used for
these regular grid problems.

Problem P2D P3D C2D C3D H2D H3D

Grid size 50002 1253 50002 1253 40002 1003

M
u
lt
if
ro
n
ta
l

Nested dissection time (s) 2.5 0.25 2.1 0.24 2.9 0.43

Symbolic factorization time (s) 3.6 8.0 3.4 8.1 4.5 6.0

Factorization time (s) 29.1 254.7 28.8 252.4 53.6 259.1

Factorization flops (×1012) 4.9 50.0 4.9 50.0 10.1 53.5

flop rate (×109Gflop/s) 168.4 196.3 170.1 198.1 188.4 206.5

fraction of peak 73% 85% 74% 86% 82% 90%

Factor size (GB) 28.4 41.6 28.4 41.6 36.3 35.5

Solution time (s) 1.4 1.1 1.5 1.1 2.4 0.91

Solution flops (×109) 7.9 10.5 7.9 10.5 21.1 18.2

Solution bandwidth (GB/s) 20.3 37.8 18.9 37.8 15.1 39.0

fraction of peak 42% 78% 39% 78% 31% 80%

Total flops (×1012) 4.9 50.0 4.9 50.0 10.1 53.5

Total time (s) 36.6 264.1 35.8 261.8 63.4 266.4

M
u
lt
if
ro
n
ta
l
+

H
S
S

Nested dissection time (s) 2.5 0.26 2.1 0.24 2.9 0.43

Separator reordering time (s) 1.1 0.40 1.1 0.35 1.3 0.68

Symbolic factorization time (s) 2.0 0.55 2.1 0.8 2.9 1.8

Factorization time (s) 14.5 19.6 13.6 41.5 30.5 92.8

Factorization flops (×1012) 1.5 2.0 1.3 5.0 3.9 18.0

flop rate (×109Gflop/s) 103.4 102.0 95.6 120.5 127.9 194.0

fraction of peak 45% 44% 41% 52% 56% 84%

Factor size (GB) 22.5 9.8 21.6 14.6 29.6 21.4

fraction of multifrontal 79% 24% 76% 35% 82% 60%

Solution time (s) 4.1 15.3 4.3 75.9 22.5 71.2

GMRES(30) iterations 3 67 3 234 11 152

Solution flops (×109) 25.6 169.9 23.7 876.3 210.5 1,759.0

Solution bandwidth (GB/s) 22.0 43.6 20.1 45.2 15.8 46.0

fraction of peak 45% 90% 41% 93% 33% 95%

HSS levels �s (total) 7 (22) 8 (18) 8 (22) 7 (18) 7 (22) 4 (18)

HSS-rank 48 46 50 397 139 30

HSS compression tolerance ε 10−6 0.9 10−5 0.1 10−4 0.9

Total flops (×1012) 1.5 2.2 1.3 5.9 4.1 19.8

fraction of multifrontal 30% 4.4% 27% 12% 41% 37%

Total time (s) 24.2 36.1 23.2 118.8 60.1 166.9

Speedup 1.52× 7.14× 1.54× 2.22× 1.05× 1.59×

multifrontal HSS solver can be used as a direct solver, and due to the smaller factor
size the solve phase will be faster than a solve with the pure multifrontal code.

6.1.2. Memory usage. Figure 7b, showing the factor size for the 3D Poisson
problem, illustrates the benefit of lower memory usage for the HSS enabled solver
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Fig. 8. Summary of the results from Table 4: Poisson (P), convection-diffusion (C), and
Helmholtz (H) on 2D (left) and 3D (right) regular grids on a 12-core Intel Ivy Bridge. Poisson and
convection-diffusion are in double precision, Helmholtz in complex double precision.
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Fig. 9. Comparison of timings for matrices from various applications on a 12-core Intel Ivy
Bridge. PARDISO is the sparse direct multithreaded solver from Intel MKL. MF refers to our
implementation of the multifrontal method and MF+HSS is our new multifrontal solver with HSS
compression. The matrices are taken from the Florida Sparse Matrix Collection and from SciDAC
projects at the DOE. For these matrices, which are all quite large and from 2D/ 3D PDE problems,
our MF solver is faster than PARDISO and HSS compression gives an additional speedup.

compared to the standard multifrontal solver. Table 4 also lists the memory usage
for each of the experiments, with a maximum reduction in memory usage of a factor
4, i.e., 24% of pure multifrontal.

The times for symbolic factorization in Table 4 are larger for the multifrontal
method than for the HSS solver. This is because the memory for dense frontal matrices
is allocated during the symbolic factorization while memory for the HSS generators
is allocated during the numerical factorization since HSS-ranks are not known in
advance.

6.2. Matrices from various applications. Figure 9 shows a comparison of
timings to solve linear systems with a number of matrices from applications. The
matrices atmosmodd, Geo 1438, nlpkkt80, torso3, Transport, and Serena
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Table 5

Same as in Figure 9: comparison of timings for matrices from various applications on a 12-
core Intel Ivy Bridge. This table also shows memory usage, the optimal number of HSS levels �s,
the optimal compression tolerance ε, and the corresponding HSS-rank and number of GMRES( 30)
iterations. For the Serena and Cube Coup dt0 matrices the pure multifrontal method ran out of
memory in double precision.

MF HSS
Matrix PDE Order #nnz Fact Solve Mem �s/�max ε Rank Its Fact Solve Mem

atmosmodd 3D 1.2M 8.8M 81s 0.4s 16GB 6/18 0.9 17 88 25s 11s 5.1GB
Geo 1438 3D 1.4M 63M 205s 1s 40GB 6/18 0.9 8 318 56s 129s 18GB
nlpkkt80 3D 1.1M 29M 197s 0.7s 30GB 6/18 0.5 59 90 49s 23s 12GB

tdr190k 3D 1.1M 43M 19s 0.2s 5.6GB 1/18 10−4 61 2 18s 0.4s 5.6GB
torso3 3D .25M 4.4M 6s 0.05s 1.8GB 6/15 0.5 36 7 5s 0.2s 1.0GB

Transport 3D 1.6M 23M 80s 0.5s 20GB 3/18 10−2 182 24 69s 10s 18GB
A22 2D .59M 145M 127s 0.7s 28GB 10/17 0.1 172 18 105s 3s 6.2GB

spe10-aniso 3D 1.2M 31M 88s 0.4s 19GB 3/18 10−2 245 21 73s 7.3s 15GB
Serena* 3D 1.4M 65M 171s 0.5s 22GB 6/18 0.9 11 111 40s 22s 8.1GB
Cube Coup dt0* 3D 2.2M 129M - - - 8/19 0.5 100 200 60s 63s 13GB
*single precision experiment

are from the University of Florida Sparse Matrix Collection.7 The other matri-
ces, tdr190k, A22, and spe10-anisotropic, are from SciDAC projects at the
DOE. The matrices are also listed in Table 5, which additionally contains matrix
Cube Coup dt0. This last matrix is not shown in Figure 9 because our multifrontal
code ran out of memory during factorization unless HSS compression was used. All se-
lected matrices are relatively large and originated from a 2D or 3D PDE (on arbitrary
domains). In Figure 9, our HSS enabled multifrontal solver (MF+HSS) is compared to
the pure multifrontal method (MF) and to the state-of-the-art PARDISO solver [49].
PARDISO, a multithreaded supernodal solver, is part of Intel MKL. For MF and
MF+HSS, reorder time includes nested dissection, MC64, and symmetrization of the
sparsity structure and for MF+HSS also separator reordering. Factor time includes
both symbolic and numerical factorization. The times are normalized to a total time
1 for MF. For the matrices selected for Figure 9, we see a consistent speedup from
MF+HSS compared to pure MF, and our MF solver always outperforms the PAR-
DISO solver. PARDISO uses the same METIS nested dissection reordering as our
implementation, with comparable reordering times for the different solvers. The su-
pernodal pivoting scheme used in PARDISO for numerical stability does not affect
the fill-in, so the overall number of nonzeros in the factors with PARDISO and with
our multifrontal code are very similar. Only for the A22 problem does reordering the
separator in order to reduce the HSS-ranks take a lot of time. This is probably due
to the addition of link-two edges to the separator graph (see section 4.2) since the
original matrix already has 246 nonzeros per row on average. However, if those extra
edges are not taken into account, the HSS-ranks are much larger, and there is no net
performance benefit from using HSS.

6.3. Many-core parallel performance. Figure 10 shows performance and
parallel scalability of the MF+HSS solver applied to the torso3.mtx matrix (�s = 6,
ε = 0.5) on two leading multicore architectures: a two socket machine with a 12-core
Intel Ivy Bridge Xeon per socket and a 60-core Intel Xeon Phi Knight’s Corner. When
running 12 or fewer threads on the dual socket 24-core Xeon system, the threads are

7http://www.cise.ufl.edu/research/sparse/matrices/

http://www.cise.ufl.edu/research/sparse/matrices/
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Fig. 10. Multicore scalability of the different steps in the MF+HSS solver on two leading
architectures. The MF+HSS solver is applied to the relatively small torso3.mtx matrix. The code
achieves good speedup for the numerical factorization phase and reasonable speedup for the solve
(MF+HSS preconditioned GMRES). Note that the sequential reordering codes METIS and MC64
become bottlenecks.

all bound to a single socket (NUMA node). Note that since the Xeon Phi only has
8GB of memory, the larger problems from Table 5 do not fit in its memory. Our code
shows good parallel scalability on both architectures for the numerical factorization
phase and reasonable scalability for the solve phase. However, with an increasing
number of threads the reordering codes MC64 and METIS/SCOTCH quickly become
scaling bottlenecks. The MC64 phase in Figure 10 shows some parallel speedup since
this time it also includes applying the column permutation from MC64, which is done
in parallel.

7. Conclusions and outlook. We presented an initial attempt to create a high
performance implementation of a novel multifrontal solver with HSS low-rank struc-
tures. We show speedups of up to 7× over the pure multifrontal algorithm for a
range of applications. Moreover, our implementation compares favorably to the com-
mercial PARDISO solver. We observed that the new solver has lower computational
complexity than the pure multifrontal method. However, the constants involved are
much larger. We will focus our attention on trying to reduce these constants (for
instance, by trying to reduce the HSS-ranks) and on solving larger problems with a
distributed memory implementation. As possible strategies to reduce the HSS-ranks,
we consider the following. A power iteration on the random vectors (for instance,
Sr = (AA∗)q AR with q a small integer) will improve the quality of the samples at
the expense of additional computations; see [29] for further details. We believe the
separator reordering (see section 4.2) can be improved, perhaps by taking into ac-
count the matrix entries and/or the underlying geometry, also leading to lower ranks.
Finally, a better rank-revealing factorization, like a strong rank-revealing QR [28],
might lead to lower ranks and possibly more stable ULV factorization but at an in-
creased computational cost. The solver with HSS compression achieves lower floating
point operation throughput than the pure multifrontal code. Hence, we believe there
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is some room for improvement. We will continue performance tuning of the code on
various modern computer architectures.

The presented code is part of a package called STRUMPACK. At the moment
STRUMPACK has a sparse shared memory solver and a dense distributed memory
solver. The longer term goal is to develop and maintain a single scalable code for both
sparse and dense problems using hybrid parallelism. The current paper, together with
the distributed HSS code developed for [47], represents a good step towards reaching
that goal.

The research on fast sparse and dense direct solvers is a very active field at the
moment. Some newer algorithmic ideas are, for instance, nested HSS approximation
and matrix-free direct solver based preconditioners. In nested HSS approximation,
the HSS generators of the frontal matrices are themselves HSS matrices. This could
further reduce the overall complexity of the solver. A matrix-free direct solver based
preconditioner could be constructed using randomization techniques. It seems that
knowledge of the sparsity pattern would be required for this.
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